1,009 research outputs found

    The symmetric, D-invariant and Egorov reductions of the quadrilateral lattice

    Full text link
    We present a detailed study of the geometric and algebraic properties of the multidimensional quadrilateral lattice (a lattice whose elementary quadrilaterals are planar; the discrete analogue of a conjugate net) and of its basic reductions. To make this study, we introduce the notions of forward and backward data, which allow us to give a geometric meaning to the tau-function of the lattice, defined as the potential connecting these data. Together with the known circular lattice (a lattice whose elementary quadrilaterals can be inscribed in circles; the discrete analogue of an orthogonal conjugate net) we introduce and study two other basic reductions of the quadrilateral lattice: the symmetric lattice, for which the forward and backward data coincide, and the D-invariant lattice, characterized by the invariance of a certain natural frame along the main diagonal. We finally discuss the Egorov lattice, which is, at the same time, symmetric, circular and D-invariant. The integrability properties of all these lattices are established using geometric, algebraic and analytic means; in particular we present a D-bar formalism to construct large classes of such lattices. We also discuss quadrilateral hyperplane lattices and the interplay between quadrilateral point and hyperplane lattices in all the above reductions.Comment: 48 pages, 6 figures; 1 section added, to appear in J. Geom. & Phy

    On the occurrence of gauge-dependent secularities in nonlinear gravitational waves

    Get PDF
    We study the plane (not necessarily monochromatic) gravitational waves at nonlinear quadratic order on a flat background in vacuum. We show that, in the harmonic gauge, the nonlinear waves are unstable. We argue that, at this order, this instability can not be eliminated by means of a multiscale approach, i.e. introducing suitable long variables, as it is often the case when secularities appear in a perturbative scheme. However, this is a non-physical and gauge-dependent effect that disappears in a suitable system of coordinates. In facts, we show that in a specific gauge such instability does not occur, and that it is possible to solve exactly the second order nonlinear equations of gravitational waves. Incidentally, we note that this gauge coincides with the one used by Belinski and Zakharov to find exact solitonic solutions of Einstein's equations, that is to an exactly integrable case, and this fact makes our second order nonlinear solutions less interesting. However, the important warning is that one must be aware of the existence of the instability reported in this paper, when studying nonlinear gravitational waves in the harmonic gauge

    The self-adjoint 5-point and 7-point difference operators, the associated Dirichlet problems, Darboux transformations and Lelieuvre formulas

    Get PDF
    We present some basic properties of two distinguished discretizations of elliptic operators: the self-adjoint 5-point and 7-point schemes on a two dimensional lattice. We first show that they allow to solve Dirichlet boundary value problems; then we present their Darboux transformations. Finally we construct their Lelieuvre formulas and we show that, at the level of the normal vector and in full analogy with their continuous counterparts, the self-adjoint 5-point scheme characterizes a two dimensional quadrilateral lattice (a lattice whose elementary quadrilaterals are planar), while the self-adjoint 7-point scheme characterizes a generic 2D lattice.Comment: 20 pages, 6 figures, submitted to Glasgow Mathematical Journal Trust for Island II proceedind

    Cryptanalysis of a One-Time Code-Based Digital Signature Scheme

    Full text link
    We consider a one-time digital signature scheme recently proposed by Persichetti and show that a successful key recovery attack can be mounted with limited complexity. The attack we propose exploits a single signature intercepted by the attacker, and relies on a statistical analysis performed over such a signature, followed by information set decoding. We assess the attack complexity and show that a full recovery of the secret key can be performed with a work factor that is far below the claimed security level. The efficiency of the attack is motivated by the sparsity of the signature, which leads to a significant information leakage about the secret key.Comment: 5 pages, 1 figur

    Liquid FM: Recommending Music through Viscous Democracy

    Get PDF
    Most modern recommendation systems use the approach of collaborative filtering: users that are believed to behave alike are used to produce recommendations. In this work we describe an application (Liquid FM) taking a completely different approach. Liquid FM is a music recommendation system that makes the user responsible for the recommended items. Suggestions are the result of a voting scheme, employing the idea of viscous democracy. Liquid FM can also be thought of as the first testbed for this voting system. In this paper we outline the design and architecture of the application, both from the theoretical and from the implementation viewpoints

    Layered Label Propagation: A MultiResolution Coordinate-Free Ordering for Compressing Social Networks

    Full text link
    We continue the line of research on graph compression started with WebGraph, but we move our focus to the compression of social networks in a proper sense (e.g., LiveJournal): the approaches that have been used for a long time to compress web graphs rely on a specific ordering of the nodes (lexicographical URL ordering) whose extension to general social networks is not trivial. In this paper, we propose a solution that mixes clusterings and orders, and devise a new algorithm, called Layered Label Propagation, that builds on previous work on scalable clustering and can be used to reorder very large graphs (billions of nodes). Our implementation uses overdecomposition to perform aggressively on multi-core architecture, making it possible to reorder graphs of more than 600 millions nodes in a few hours. Experiments performed on a wide array of web graphs and social networks show that combining the order produced by the proposed algorithm with the WebGraph compression framework provides a major increase in compression with respect to all currently known techniques, both on web graphs and on social networks. These improvements make it possible to analyse in main memory significantly larger graphs
    • …
    corecore